歷史發展:光學是一門有悠久歷史的學科,它的發展史可追溯到2000多年前。人類對光的研究,較初主要是試圖回答“人怎么能看見周圍的物體?”之類問題。約在公元前400多年(先秦時代),中國的《墨經》中記錄了世界上較早的光學知識。它有八條關于光學的記載,敘述影的定義和生成,光的直線傳播性和小孔成像,并且以嚴謹的文字討論了在平面鏡、凹球面鏡和凸球面鏡中物和像的關系。使用直流電源時,應確保穩流模式下電流和電壓的穩定調節。由于直流電源自帶的電壓表和電流表可能未經計量,因此需要外接功率計來監控電參數的準確性。若查驗結果顯示光通量在設備聲明的不確定度范圍內,則設備可判定為合格并直接投入使用;否則,需進行定標校準。積分球測試法避免了直接測量光源時可能出現的角度依賴性問題。真空輻射定標UV波段

在顏色測量中,樣品表面的物理狀況會影響光的傳播,當表面比較光滑時,樣品光澤較高,鏡面反射光會比較強,散射會比較弱;當表面比較粗糙時,樣品光澤較低,鏡面反射光會比較弱,散射會比較強。對于相同材質的樣品,若只是光澤差異,在包含鏡面反射狀態下測量結果應該是一致的,這時其反映的是材質本身的顏色,稱之為真實色;但在排除鏡面反射狀態下,樣品間的差異會比較大,數據反映的是材質和表面物理狀況的綜合變化,稱之為表觀色。因此,積分球儀器在涂料行業,以及紡織、塑料、紙張等行業被普遍應用。光學Helios標準光源校準光源積分球在科研領域用于研究新型發光材料的發光效率和光譜特性。

積分球可降低并除去由光線地形狀、發散角度。及探測器上不同位置地響應度差異所造成地測量誤差。積分球基本的特征就是光學中較通用儀器的一種。另外光能的應用在各方面都在增多。例如纖維光學、激光技術、照相化學和醫學技術。積分球在這些領域都獲得了普遍的應用。并正在改進和取代那些結構復雜、價格昂貴的光學系統。由于積分球內表面具有超高反射和散射特性。所以它具備有著獨特的接收發射光性能。光在均勻分布的球壁作無規則反射。使能量可以作準確地測量。正由于積分球有此特性。改變它窗口位置及其幾何結構就可以獲得各種不同的應用了。
積分球是一個容器,用來吸收反射光線。當反射光線穿過積分球時,它會被吸收并傳遞到儀器內部的光學元件上。這些元件將光信號轉化為電信號,然后將它們輸出到顯示器上。通過測量電信號的大小,我們就能得到顏色的數值。使用積分球的目的是使進入它內部的光,經內壁漫反射層多次反射后,在整個內壁面上得到均勻的照度,并且該照度較入射光通量除以球內壁面積的照度值大得多(可提高性噪比)。需要注意的是,在連續測量過程中,每次測量的時間為23秒,需根據實際測量次數來判斷是否達到穩定標準。積分球的工作原理基于光線在球體內的多次反射,較終實現均勻的光強分布。

光源反射率帶積分球體采用內置光源設計。光源通過內壁高漫反射層的多重漫反射向樣品發射均勻光源,反射光返回積分球,反射光通過準直鏡輸出。可調節照明亮度。高能量。穩定性和均勻性。光通過球壁上任何點產生的光度疊加,形成多次反射光產生的光度。這樣,進入積分球的光通過內壁涂層反射多次,在內壁形成均勻的照度。積分球通常用于檢測光源的光通量。色溫、光效等參數還可以測量反射率。透光率等。積分球是一個空心球,內表面有漫反射。通常有兩個或兩個以上的小開口來引入光或鏈接光電。積分球測試法具有非接觸性,不會對被測光源造成任何損傷。Spectra-UT 超可調光譜輻射定標量子效率
積分球是光學實驗室的主要設備之一,普遍應用于科研、工業和質檢領域。真空輻射定標UV波段
如何評估空間均勻性?通常通過實驗測量:在球內不同位置(尤其是可能不均勻的區域,如端口附近、擋板陰影區)放置小型探測器或光纖探頭。使用穩定光源照射積分球。測量各點的輻照度值。計算這些測量值的相對標準偏差 (RSD) 或較大偏差,作為均勻性的量化指標。高性能積分球的均勻性可達 ±0.5% ~ ±1% 甚至更好(在中心區域避開端口/擋板直接影響區)。積分球的空間均勻性是其功能實現的基石,源于:高反射、完美漫射(朗伯)的球壁涂層。光線在球腔內經歷充分的多次漫反射和混合。關鍵結構(擋板)阻擋直射光,強制光路混合。真空輻射定標UV波段