積分球的主要用途:?1. 光學參數測量?:光通量與色溫測試?:積分球可配合光譜儀或光度探頭,依據國際標準(如LM 79、IEC 62717)測量LED、燈具等光源的總光通量、色坐標及色溫。?反射率與透射率分析?:將待測材料置于積分球內,通過對比入射光與反射/透射光強度,計算材料的反射率或透射率。2. 校準與標定?:傳感器校準?:用于相機CMOS/CCD的平場校正和線性度標定,消除像素響應差異。遙感設備標定?:衛星遙感系統需通過積分球校準光譜響應曲線,確保地面觀測數據的準確性。?3. 工業與科研應用?:LED與激光測試?:評估LED光源的均勻性和光衰特性,或分析激光束的能量分布。質量控制?:在燈具制造中,通過積分球驗證產品是否符合國家標準(如GB/T 24824)。積分球測量數據可用于計算光源的光效(lm/W),評估能源效率。Spectra-UT 超可調光譜Helios標準光源測試

當一束輻通量為Φ(λ)的光源經光孔進入內球半徑為R的積分球內,經涂層多次漫反射后,形成均勻照明。設除投射面外,其余內壁任一點M處的總照度E(λ)可用下表示:式中:E(λ)為M點的總光譜幅照度;ρw(λ)為積分球內壁的光譜反射比;Φ(λ)為進入進入積分球的光譜輻通量;R為積分球內球半徑;f為積分球開口球面面積與積分球總的內反射表面積之比。式中,當一束輻通量進入理想積分球后,除投射面外,球內表面任意點的照度(包括球壁開口處球面上的照度)只是球的幾何尺寸、涂層的漫反射比、進入球的輻通量的函數,而與位置無關。光譜輻照度輻射定標原理積分球在建筑照明行業用于評估燈具的配光曲線和光分布特性。

積分球憑借其獨特的光場均勻化能力,成為光學測量領域不可或缺的工具。從工業生產的質量控制到科研領域的高精度標定,其應用場景不斷擴展,為光學技術的發展提供了重要支撐。色差儀積分球的測色原理:積分球是一個內壁涂有白色漫反射材料(漫反射系數接近于1,常用的是氧化鎂或硫酸鋇)的空腔球體,內壁是良好的球面(要求與理想球面的偏差應不大于內徑的0.2%)。氧化鎂涂層在可見光譜范圍內的光譜反射比都在99%以上,這樣,進入積分球的光經過內壁涂層多次反射,在內壁上形成均勻照度。
定標。定標校準是確保設備準確性的重要步驟。在此過程中,應選用慧譜標準光源進行定標,并對積分球的色溫和光通量進行校準。只有在完成定標后,設備才能正式投入使用。此外,當軟件測試設置更改、探頭更換或其他原測試條件發生變化時,也需要重新進行定標校準。定標前的操作與查驗相似,但在安裝好標準燈后,需要在點亮前進行清零操作。清零過程中,除不點亮標準燈外,其他條件與測試時保持一致。清零完成后,按照計量證書上的條件點亮標準燈,并等待其發出的光通量達到穩定狀態。隨后,在軟件操作界面中輸入標準燈的標準光通量和標準色溫,點擊開始定標,設備將自動完成定標過程。定標完成后,必須再次進行查驗,以確保設備滿足試驗要求。隨著技術的進步,積分球的制造成本逐漸降低,更加普及化。

如何評估空間均勻性?通常通過實驗測量:在球內不同位置(尤其是可能不均勻的區域,如端口附近、擋板陰影區)放置小型探測器或光纖探頭。使用穩定光源照射積分球。測量各點的輻照度值。計算這些測量值的相對標準偏差 (RSD) 或較大偏差,作為均勻性的量化指標。高性能積分球的均勻性可達 ±0.5% ~ ±1% 甚至更好(在中心區域避開端口/擋板直接影響區)。積分球的空間均勻性是其功能實現的基石,源于:高反射、完美漫射(朗伯)的球壁涂層。光線在球腔內經歷充分的多次漫反射和混合。關鍵結構(擋板)阻擋直射光,強制光路混合。積分球能幫助制造商快速篩選出光學性能優異的光源產品。光譜輻照度輻射定標原理
積分球測試時需避免電磁干擾,確保光電探測器的信號穩定性。Spectra-UT 超可調光譜Helios標準光源測試
積分球的優點和局限性:積分球作為一種光學元件,具有以下優點:可以消除光源本身原因造成的出射光線不均勻或者帶有偏振方向,提高測量精度。可以確保待測光源射入分光測色儀的角度相同,提高測量再現性。可以測量各種角度的光線,從而得到更全方面的顏色信息。然而,積分球也存在一些局限性:價格較高,制造和維修成本較大。對于不同形狀和尺寸的樣品,需要使用不同大小和形狀的積分球,通用性較差。在測量某些特定形狀和材質的樣品時,可能會產生誤差。Spectra-UT 超可調光譜Helios標準光源測試