鈦電極是以鈦為基體,通過表面改性處理制備而成的電極材料。鈦作為一種具有高比強度、良好耐腐蝕性的金屬,為電極提供了穩定的機械支撐。在電極制備過程中,通常會在鈦基體表面涂覆一層或多層具有電催化活性的物質,如金屬氧化物、貴金屬等。這些活性涂層能夠明顯改變電極的電化學性能,使其具備特定的電催化功能,從而在不同的電化學過程中發揮作用。例如,在氯堿工業中,鈦電極的使用大幅提高了電解效率和產品質量,推動了行業的發展。鈦電極的出現,為眾多需要高效、穩定電極材料的領域提供了新的解決方案。

氰的反應物是電鍍、冶金廢水的典型毒性成分,電氧化技術能將其高效轉化為低毒產物。在堿性條件下(pH>10),氰根(CN?)在陽極被直接氧化為氰酸根(OCN?),進一步水解為CO?和NH?。采用Ti/RuO?-IrO?電極時,CN?去除率可達99.9%,且電流效率高達70%。若廢水中含重金屬(如Cu2?),電氧化還可同步破絡合并沉淀金屬離子。該技術的重要參數是pH控制(防止HCN揮發)和氯離子濃度(NaCl作為電解質時可生成活性氯強化氧化),實際應用中需避免中間產物(如CNCl)的生成風險。江蘇源力循壞水電極設備循環水電化學處理設備緊湊。

活性層是電極的重要部分,通常由具備電化學活性的材料構成。在電池電極中,活性層材料的特性決定了電池的充放電性能、容量大小等關鍵指標。例如在鋰離子電池中,陰極的活性層材料如鋰鈷氧化物,其晶體結構和化學性質影響著鋰離子的嵌入和脫出過程,進而影響電池的能量密度和循環壽命。在其他電化學反應中,活性層材料能夠通過自身的氧化還原反應,實現電子的轉移,推動反應的進行,是決定電極功能的關鍵因素。
導電層在電極中起著至關重要的電子傳輸作用,它的存在保證了電子能夠高效地進出活性層。為了實現良好的導電性能,導電層通常選用高導電率的材料,如金屬銅、銀等。在設計導電層時,還需考慮其與活性層和基底的兼容性,確保各層之間能夠緊密結合,減少電子傳輸過程中的阻力。此外,導電層的厚度和結構也會對電子傳輸效率產生影響,需要根據具體的應用需求進行優化設計,以提高電極的整體性能。
循環水系統的腐蝕與結垢往往并存,電化學方法可通過調控水質穩定性指數(LSI)實現雙重控制。陽極生成氧化性物質(如ClO?)抑制腐蝕菌,而陰極反應生成的OH?與HCO??結合生成CO?2?,優先與Ca2?形成可排垢層。采用Ti/Pt陽極與316L不銹鋼陰極組合時,碳鋼掛片的腐蝕速率從0.2 mm/年降至0.02 mm/年,同時結垢傾向指數(PSI)從8降至4。智能控制系統可根據在線pH、ORP和電導率數據動態調節電流(0.5-5 A),適用于水質波動大的工況。某化工廠應用后,設備壽命延長3倍,且年節水效益達200萬元。電化學系統使冷卻塔逼近溫差降至3℃。

工業廢水成分復雜,常含有毒、難降解有機物(如酚類、染料、農藥),而電氧化技術對此類污染物表現出獨特優勢。例如,在焦化廢水處理中,采用Ti/SnO?-Sb?O?電極可將苯酚濃度從500 mg/L降至5 mg/L以下,COD去除率達85%。對于印染廢水,電氧化能同時實現脫色(降解偶氮鍵)和COD削減,如使用Ti/Pt陽極時,活性艷紅X-3B的脫色率在60分鐘內達99%。該技術的工業化應用需解決電極壽命(如涂層剝落問題)和能耗優化(如采用脈沖電流),目前已有模塊化電氧化反應器用于電鍍、制藥等行業的中試案例。電化學阻垢劑再生復用次數達10次。北京數據中心電極
電極技術處理不影響水體透明度。江西吸收塔電極設施
電極材料的選擇至關重要,它直接影響電極的性能和應用范圍。金屬材料如銅、銀、鉑等,因具有良好的導電性,在許多電極應用中備受青睞。銅的導電性優良且成本相對較低,常用于一般的導電電極;銀的導電率更高,在一些對導電性要求極高的電子器件電極中有所應用;鉑則因其出色的化學穩定性和生物相容性,常用于醫療設備電極以及一些高精度的電化學檢測電極。此外,碳材料如石墨,也因其獨特的導電性能和化學穩定性,在電池電極等領域使用。江西吸收塔電極設施