校準液的選擇需與被測樣品的 pH 范圍、溫度及化學特性高度匹配。若電極主要用于測量中性至弱酸性樣品(pH 4-7),卻頻繁使用 pH 10 的強堿性緩沖液校準,玻璃膜會因長期接觸高濃度 OH?而受腐蝕(尤其普通鋰玻璃膜),導致耐堿性下降。同理,用含氟化物的緩沖液校準普通玻璃電極,可能直接與膜中的硅酸鹽反應生成氟化硅,破壞膜結構。因此,校準液的 pH 值應盡可能貼近被測樣品的典型范圍(如測 pH 5-6 的食品樣,優先用 pH 4.01 和 7.00 的緩沖液);若樣品含特殊成分(如高鹽、有機溶劑),需選用特定匹配緩沖液(如高離子強度緩沖液),避免緩沖液與樣品的滲透壓差異導致膜表面離子交換失衡。...
在不同壓力場景下 pH 電極的選型與應用。1.低壓場景(0-0.6MPa)典型場景:市政管道、敞口反應釜、常規儲罐。選型要點:優先選擇316L不銹鋼外殼+陶瓷液接界的電極,如工業在線常規款,成本低且維護方便。注意事項:確保安裝位置無負壓(如泵入口),避免因壓力驟降產生氣泡;定期檢查O型圈老化情況(每3個月)。2.高壓場景(0.6-20MPa)典型場景:化工高壓反應釜(如加氫反應)、深海探測(1000米水深≈10MPa)、超臨界流體設備。選型要點:需滿足“金屬密封+固態電解液”,例如鈦合金外殼+焊接式液接界的高壓電極,可承受10-20MPa壓力。優勢案例:在10MPa加氫反應釜中,采用金屬波紋管...
選擇適合特定測量環境的 pH 電極,可關注介質的物理狀態:避免堵塞與響應延遲。介質的物理形態會影響電極與樣品的接觸效率,需匹配電極結構設計。對于高粘度或含懸浮物的介質(如泥漿、食品漿料),普通電極的細孔隔膜易被堵塞,應選擇大孔徑參比隔膜(如多孔聚四氟乙烯)或平頭電極(敏感膜突出,減少附著);若為在線測量,優先采用流通式安裝,讓樣品強制流過電極。易產生氣泡的介質(如發酵液、曝氣水樣)會導致電極與樣品接觸不充分,可選擇自清潔電極(帶攪拌或超聲波清洗功能)或沉入式電極(插入液面以下,減少氣泡干擾)。低電導介質(如純水、去離子水)因離子濃度低,易導致響應緩慢,需選擇低阻抗和敏感膜(如超薄玻璃膜)并搭配...
內部結構對pH電極耐壓性的強化作用。即使材質相同,內部結構設計也會改變耐壓表現:高壓設計:采用“一體化成型外殼+內置壓力補償腔”,通過惰性氣體(如氮氣)平衡內外壓力,可將316L不銹鋼外殼的耐壓極限從1MPa提升至2MPa。負壓設計:在PTFE外殼內嵌入彈簧反壓裝置,抵消負壓對電解液的抽吸作用,使原本只能承受0.1MPa的PTFE電極可用于-0.05MPa(微負壓)環境。液接界結構:高壓下采用“多孔金屬液接界”(如鈦合金燒結體),相比傳統陶瓷液接界,抗顆粒壓實能力提升5倍,在10MPa下仍能保持離子傳導通暢。pH 電極多電極陣列設計可同步監測多點位,提升復雜體系分析效率。浦東新區pH電極應用食...
在一些特殊介質導致pH電極響應異常的場景中,適用于多點校準法。某些介質會干擾電極的正常響應(如高離子強度、含絡合劑或特殊離子),導致電極在不同pH區間的靈敏度不一致。例如:高鹽溶液(如海水、腌制劑,離子強度>0.1mol/L):會壓縮敏感膜的離子擴散層,使低pH和高pH區域的響應斜率產生差異;含氟化物或重金屬離子的溶液:氟離子會腐蝕玻璃膜,導致高pH區域響應延遲;重金屬離子(如Ag?、Hg2?)會與參比液中的Cl?反應,影響參比電位穩定性;有機介質(如乙醇-水混合液、油品乳化液):敏感膜在有機相中的溶脹程度不同,可能導致不同pH點的響應非線性。多點校準可通過覆蓋這些介質中易產生偏差的pH區間,...
選擇適合特定測量環境的 pH 電極,也需考慮電極的附加功能:按需選擇提升效率的設計。根據操作便利性需求,可關注電極的附加設計:自動溫度補償(ATC):當介質溫度波動大時(如工業管道),必須選擇內置NTC溫度傳感器的電極,避免手動補償誤差??焖夙憫盒枰獙崟r數據(如反應釜監控)時,選擇小體積敏感膜(增大比表面積)或帶攪拌功能的電極。易清潔設計:對于含油污、生物膜的介質(如廢水、發酵液),選擇光滑PTFE殼體加可拆卸清洗的隔膜,減少污染物附著。pH 電極深海監測需選耐壓型,普通電極無法承受高壓環境。高耐受性pH電極費用內部結構對pH電極耐壓性的強化作用。即使材質相同,內部結構設計也會改變耐壓表現:...
化工聚合反應釜中,引發劑加入后溫度從 60℃驟升至 120℃,pH 電極需抗驟熱沖擊。這款電極采用熱緩沖設計,內置銅制熱沉,可延緩 90% 的瞬時溫度變化,在 60℃→120℃的 10 分鐘升溫中,測量偏差≤0.03pH。其聚四氟乙烯外殼線膨脹系數只有 10×10??/℃,與玻璃膜匹配性好,無冷熱應力開裂風險。使用時需將電極安裝在攪拌軸附近,確保溫度均勻,每批次反應后檢查膜層是否有熱損傷,適配 PVC、PE 等聚合工藝。化工高溫染色槽中,溫度維持在 130℃±5℃,染液 pH 值影響色牢度。這款電極在 130℃高溫下,每月零點漂移 ±0.02pH,采用耐染料污染的陶瓷液接界,在分散染料體系中無...
選擇適合特定測量環境的 pH 電極,可關注介質的物理狀態:避免堵塞與響應延遲。介質的物理形態會影響電極與樣品的接觸效率,需匹配電極結構設計。對于高粘度或含懸浮物的介質(如泥漿、食品漿料),普通電極的細孔隔膜易被堵塞,應選擇大孔徑參比隔膜(如多孔聚四氟乙烯)或平頭電極(敏感膜突出,減少附著);若為在線測量,優先采用流通式安裝,讓樣品強制流過電極。易產生氣泡的介質(如發酵液、曝氣水樣)會導致電極與樣品接觸不充分,可選擇自清潔電極(帶攪拌或超聲波清洗功能)或沉入式電極(插入液面以下,減少氣泡干擾)。低電導介質(如純水、去離子水)因離子濃度低,易導致響應緩慢,需選擇低阻抗和敏感膜(如超薄玻璃膜)并搭配...
壓力通過 “物理變形→結構破壞→離子傳導受阻” 的鏈條干擾測量:低壓力(<0.5MPa)對精度影響可忽略;中高壓(0.5-10MPa)通過玻璃膜斜率漂移、電解液氣泡、液接界堵塞導致誤差;超高壓(>10MPa)疊加高溫時,會引發電極部件不可逆損傷,誤差可達 ±0.5pH 以上。理解這些機制后,可通過選擇耐高壓電極(加厚玻璃膜、金屬密封、壓力補償設計)和控制壓力變化速率(避免驟升驟降)來減少干擾。壓力對 pH 電極測量精度的影響并非直接作用于氫離子濃度,而是通過改變電極主要部件的物理狀態與離子傳導路徑,破壞測量系統的穩定性。其機制可拆解為玻璃膜響應失效、電解液狀態異常、液接界傳導受阻三大鏈條,每個...
化工高溫磺化反應釜中,溫度達 180-200℃,發煙硫酸環境對電極耐高溫酸性要求嚴苛。這款電極的玻璃膜采用鋯硅酸鹽改性,在 200℃、20% 發煙硫酸中浸泡 500 小時無腐蝕,溫度補償誤差≤±0.02pH。其鈦合金外殼與聚四氟乙烯密封件形成雙重防護,在高溫下無溶出物污染。安裝時需垂直插入液相,距攪拌軸 30cm 以上,每 8 小時用 180℃硫酸沖洗,適用于十二烷基苯磺酸鈉生產。化工低溫脫硝系統中,氨水噴射區溫度從 300℃降至 180℃,pH 監測需抗高溫氨腐蝕。這款電極采用 316L + 哈氏合金 C276 復合外殼,抗氨腐蝕性能提升 50%,在 180-300℃溫度驟變中,密封性能達 ...
壓力環境下pH電極的基本原則.1.選型:以系統峰值壓力(含波動峰值)為基準,預留20%耐壓余量(如系統峰值1MPa,選1.2MPa以上電極)。2.設計:高壓靠“金屬密封+固態電解液”防泄漏,低壓靠“防氣泡設計”保穩定,負壓靠“反壓補償”防滲漏。3.維護:壓力越高,越需關注密封完整性;定期校準(高壓場景每1個月,低壓每3個月),確保斜率≥95%。通過科學選型與規范使用,pH電極可在復雜壓力環境中實現長期穩定測量,為工業過程的精確調控提供可靠數據支撐。pH 電極測反應過程時,建議每秒采樣一次捕捉快速 pH 變化峰值。宿遷pH電極按需定制微基(VG)智慧科技在發酵、食品加工等中低壓(0-1.0MPa...
液接界是pH電極電解液與被測介質的“離子通道”(如陶瓷、聚四氟乙烯材質),其功能是通過K?、Cl?等離子遷移形成穩定液接電位。壓力對其的影響表現為:孔隙物理壓縮:常規陶瓷液接界的孔徑約2-5μm,當壓力升高1MPa時,孔徑會被壓縮至1.5-4μm(壓力越高,壓縮越明顯)??紫犊s小會降低離子遷移速率——壓力每升高1MPa,液接界的離子傳導效率下降5-10%,導致液接電位穩定性變差(如在3MPa下,液接電位波動從±1mV增至±5mV,對應pH波動±0.017至±0.085)。高壓下的“堵塞風險”:若被測介質含顆粒物(如泥漿、懸浮液),高壓會將顆粒物“壓入”液接界孔隙(類似“高壓過濾”)。例如在2M...
化工高溫黏度計配套中,測量溫度達 180℃,物料黏度隨溫度變化明顯。這款電極與高溫黏度計協同設計,探頭直徑為8mm,可插入黏度計測量腔,在 180℃、1000cp 黏度下響應時間≤5 秒。其藍寶石玻璃膜硬度達 9H,抗物料沖刷能力強,溫度補償誤差≤±0.01pH/10℃。使用時需同步監測黏度與溫度,當黏度>5000cp 時降低攪拌速率,防止電極膜磨損,適配聚酯熔體、瀝青等高溫高黏物料?;さ蜏丶状枷垂に囍?,吸收塔溫度低至 - 40℃,甲醇溶液易凍損普通電極。這款特定電極采用 - 50℃電解液,在 - 40℃時離子傳導率保持常溫的 80%,響應時間≤8 秒。其 316L 不銹鋼外殼經深冷處理(-...
pH電極自身的材料與結構設計構成了耐受性能的 “先天基礎”。敏感玻璃膜的成分決定了其抗腐蝕能力:常規鋰玻璃膜適用于中性至弱酸堿環境,但在高氟或強堿介質中易受損;而低鈉玻璃膜通過減少鈉離子含量,可提升耐堿性,固態聚合物膜則對有機溶劑表現出更好的穩定性。參比系統的設計同樣關鍵,若填充液(如 KCl 溶液)與介質中的離子(如 Ag?)發生反應生成沉淀,會堵塞液接界,阻礙離子遷移;隔膜的孔徑和材質需與介質匹配,例如大孔徑陶瓷隔膜適合高粘度介質,而聚四氟乙烯隔膜則在強腐蝕性環境中更耐用。電極外殼與密封材料的選擇也需適配介質特性:聚砜外殼耐一般性酸堿,但不耐受強溶劑;不銹鋼外殼抗磨損性強,卻在酸性環境中易...
pH 電極選擇兩點校準還是多點校準,需結合測量場景的精度需求、樣品 pH 范圍、電極特性及實際操作條件綜合判斷,關鍵是在保證數據可靠性與操作效率間找到平衡。需考慮操作成本與效率。多點校準需準備更多種 pH 緩沖液,校準過程耗時更長(每個點需等待電極穩定響應),適合實驗室靜態測量;而現場快速檢測、在線實時監測等場景,更注重操作便捷性,兩點校準因步驟少、耗時短(通常 5-10 分鐘),成為更優解。同時,若緩沖液與樣品存在兼容性問題(如含特殊離子的介質可能污染緩沖液),減少校準點也能降低交叉污染風險,間接保護電極性能。pH 電極采用固態電解質,避免電解液流失,適用于倒置 / 傾斜測量場景。微基智慧p...
寬范圍pH測量場景(跨酸性-中性-堿性區域)適用于多點校準法進行測量。當測量對象的pH值跨度較大(如pH1-12),pH電極的實際響應往往并非理想線性——在極端pH(如強酸性pH<2或強堿性pH>12)區域,玻璃敏感膜的離子交換效率會下降,導致響應斜率偏離理論值(25℃時59.16mV/pH),甚至出現非線性彎曲。此時兩點校準(通常選中性和某一極端點)無法覆蓋中間區域的誤差,而多點校準(如選用pH1.68、4.01、7.00、9.18、12.46緩沖液)可通過多個校準點擬合曲線,修正不同區間的偏差。例如:工業電鍍液(pH1-3與pH10-12交替測量);酸堿中和反應過程監測(從pH2升至pH1...
氟離子電極的膜表面若污染(如有機物附著),會導致響應延遲和靈敏度下降??捎密洸颊阂掖疾潦茫儆萌ルx子水沖洗,嚴重污染時用 0.1mol/L HCl 浸泡 10 分鐘。某農藥廠案例中,經清潔后電極斜率從 50mV/dec 恢復至 58mV/dec,測量精度明顯提升。氟離子電極在醫療領域用于尿液氟檢測(正常范圍 1~3mg/L),輔助診斷氟中毒。檢測時取 1mL 尿液,加 9mL TISAB,電極法可在 2 分鐘內完成測定,比離子色譜法(30 分鐘)更高效。某醫院應用后,檢測效率提升 15 倍,為臨床診斷提供快速依據。pH 電極存儲濕度≤80% RH,防潮包裝設計,適合潮濕環境長期存放。江蘇生物發...
pH電極玻璃膜的電阻隨溫度變化(通常溫度每升高10℃,電阻下降約50%),而電極的膜電阻特性會影響電勢測量的信噪比,間接干擾溫度補償:低溫下高電阻的影響:0℃時,玻璃膜電阻可能高達1000MΩ,若儀器輸入阻抗不足(如<10^12Ω),會導致電勢信號衰減,測量的mV值偏低。此時,ATC基于正確的溫度值修正斜率,但原始mV信號已失真,補償后的pH值必然偏小。電阻波動的干擾:溫度快速變化時,膜電阻的瞬時波動可能被儀器誤判為電勢變化,疊加到pH測量值中,而補償算法無法區分是電阻波動還是真實H+活度變化,導致補償精度下降。pH 電極在工業現場需加裝防護罩,防止機械碰撞或物料沖擊。廣州光伏行業用pH電極在...
氟離子電極的選擇性是其優勢,LaF?單晶膜對 F?的選擇性系數遠高于其他離子(如 Cl?的選擇性系數<10??)。*OH?會產生干擾,因 OH?與 La3?反應生成 La (OH)?,破壞膜結構。實際應用中通過控制 pH 至 5~8(加入 TISAB 緩沖液),可將 OH?干擾降至比較低,確保在含高濃度其他陰離子的溶液中,仍能精確檢測氟離子。氟離子電極的檢測范圍覆蓋 10??~1mol/L(約 0.02~19000mg/L),滿足從痕量到高濃度的檢測需求。低濃度段(<10??mol/L)需延長響應時間至 3~5 分鐘,確保電位穩定;高濃度段(>0.1mol/L)響應迅速(<30 秒),但需避免...
化工丙烯聚合反應釜中,溫度控制在 70-75℃,需精確 pH 監測調控分子量。這款電極在 70-75℃區間,溫度補償精度達 ±0.005pH,其玻璃膜采用防粘涂層,可減少聚丙烯顆粒附著。電極內置藍牙模塊,可無線傳輸溫度 - pH 數據至中控室,在連續聚合中,測量漂移≤0.01pH/8h。使用時避免與催化劑直接接觸,每批次用 70℃己烷清洗,適配聚丙烯、聚乙烯聚合工藝。化工低溫甲醇洗富液再生塔中,再生溫度從 - 40℃升至 120℃,pH 監測需耐寬溫循環。這款電極經 - 40℃至 120℃冷熱循環測試 1000 次無損壞,其電解液采用離子液體配方,寬溫域內導電性穩定。溫度補償采用分段校準法...
壓力對 pH 電極測量精度的影響程度取決于壓力值、溫度及電極設計:低壓(<0.5MPa)影響微?。ㄕ`差<±0.05pH),可忽略;中高壓(>0.5MPa)需通過耐高壓電極和優化操作控制誤差;超高壓 + 高溫場景則需接受較大誤差(±0.3pH 以上),并通過頻繁校準補償。實際應用中,建議電極耐壓極限高于系統峰值壓力 20%,并優先選擇帶壓力補償功能的設計,以更高限度降低干擾。壓力對 pH 電極測量精度的影響并非恒定,而是隨壓力大小、電極設計及環境條件(如溫度、介質)變化,誤差范圍可從 ±0.02pH(微影響)到 ±0.5pH。其主要機制是壓力通過改變電極關鍵部件(玻璃膜、電解液、液接界)的物理狀...
從測量原理層面看,壓力如何影響pH電極的測量性能?pH 電極通過玻璃膜兩側的氫離子濃度差產生電位差實現測量,而壓力會改變電解液的離子遷移速率、液接界電位及玻璃膜的響應特性:1.低壓(<0.1MPa)時,若壓力不穩定,可能導致液接界處氣泡產生,阻斷離子傳導,造成讀數漂移(誤差可達 ±0.1pH)。2.高壓(>1MPa)時,壓力會壓縮電極內部電解液,改變參比電極的電位穩定性,同時可能導致玻璃膜變形,影響靈敏度(斜率下降 5%-10%)。3.負壓(真空或低于大氣壓)環境下,電解液可能因壓力差滲出,破壞參比系統,甚至導致電極失效。pH 電極測反應過程時,建議每秒采樣一次捕捉快速 pH 變化峰值?;茨蟨...
pH 值對氟離子電極測量影響:pH<5 時,H?與 F?結合生成 HF(pKa=3.18),降低游離 F?濃度;pH>8 時,OH?與 LaF?反應釋放 F?,導致結果偏高。因此需將溶液 pH 控制在 5~8,常用 TISAB 中的緩沖對實現。在酸雨樣品(pH≈4)檢測中,加入 TISAB 調節 pH 后,測量值與標準方法偏差≤0.05mg/L。氟離子電極在飲用水檢測中表現突出,可快速篩查氟超標問題(國標限值 1.0mg/L)。檢測時取 10mL 水樣,加 10mL TISAB,攪拌后插入電極,3 分鐘內即可讀數。某水廠應用案例顯示,其與離子色譜法比對誤差<0.03mg/L,且檢測成本為色譜法...
改善 pH 電極在強酸性介質(通常指 pH<1 的環境)中的耐受性,針對極端強酸(如濃硝酸、含HF的溶液)或連續監測場景,需額外防護。1.使用流動注射或流通池減少直接接觸在線監測時,通過流通池讓樣品快速流過電極表面,減少電極與強酸的靜態浸泡時間;或采用透析膜組件,隔離樣品中的腐蝕性成分(如HF),只允許H?通過。2.添加抑制劑(針對含氟強酸體系)若樣品含HF(如酸洗廢液),HF會與玻璃中的SiO?反應生成SiF?,導致膜溶解??稍跇悠分屑尤肱鹚幔舛燃s1%-5%),硼酸與F?結合形成穩定的BF??,降低游離F?對玻璃膜的腐蝕。3.定期更換易損部件對于可更換的參比隔膜(如陶瓷芯),若在強酸中出現...
氟離子電極的檢測范圍覆蓋 10??~1mol/L(約 0.02~19000mg/L),滿足從痕量到高濃度的檢測需求。低濃度段(<10??mol/L)需延長響應時間至 3~5 分鐘,確保電位穩定;高濃度段(>0.1mol/L)響應迅速(<30 秒),但需避免膜表面過度飽和。通過分段校準,可使全范圍測量誤差≤±2%,適配環境、食品等多領域檢測??傠x子強度調節緩沖液(TISAB)是氟離子檢測的關鍵輔助試劑,其與電極配合使用可消除干擾。TISAB 通常含檸檬酸鈉(絡合 Al3?、Fe3?等干擾離子)、NaCl(固定離子強度)、HAc-NaAc(控制 pH5~6)。在地下水檢測中,加入 TISAB 后,...
要提高對溫度敏感的 pH 電極的溫度補償精度,需優化溫度補償的算法與參數設置。pH 電極的溫度敏感性主要體現在兩個方面:一是電極斜率(Nernst 響應系數)隨溫度變化,二是溶液自身的 pH 值會隨溫度改變(如緩沖液的溫度系數)。因此,補償系統要基于能斯特方程對電極斜率進行修正,還需錄入被測溶液的溫度系數(如通過查閱手冊獲取特定溶液在不同溫度下的 pH 值變化規律),避免補償電極自身而忽略溶液特性帶來的誤差。對于高精度需求場景,可采用分段補償策略,即根據實際溫度范圍細化補償參數,而非依賴單一的線性補償公式,尤其在極端溫度(如低于 5℃或高于 60℃)下,需通過實驗校準獲取更精確的補償系數。pH...
pH 電極兩點校準法的操作需按規范步驟進行,以確保校準的準確性。首先是前期準備,需選取兩種合適的標準緩沖液,其 pH 值應能覆蓋被測樣品的常見范圍,比如測酸性樣品可選 pH 4.01 和 7.00,測堿性樣品則可選 pH 7.00 和 10.01,同時要保證緩沖液在有效期內、無變質。接著檢查電極狀態,若敏感膜有污染物,用去離子水輕輕沖洗,再用軟紙巾吸干表面水分(不可擦拭,防止損傷膜層),對于可填充型參比電極,需確認填充液充足且無氣泡。之后將緩沖液和電極放在與測量環境溫度一致的地方平衡至少 10 分鐘,避免溫差影響校準精度。pH 電極微玻璃毛細管設計,防氣泡堵塞,適配懸濁液、粘稠樣品檢測。光伏行...
不同材質 pH 電極的耐壓性差異本質是材質強度、耐腐蝕性與成本的權衡。外殼材質奠定耐壓基礎,玻璃膜和密封材料決定高壓下的穩定性,而結構設計可進一步突破材質本身的極限。實際選型中,需結合具體壓力值、介質特性及預算,優先保證材質耐壓極限高于系統最大壓力(建議預留 20% 安全余量),以避免因材質失效導致的測量誤差或安全風險。材質決定耐壓邊界,設計拓展應用場景。pH 電極的耐壓性能主要由外殼材質、玻璃膜材質、密封材料及內部結構設計共同決定,不同材質組合在耐壓極限、適用場景及穩定性上存在差異。pH 電極測染發劑需抗有機物污染,色素附著會影響長期測量精度。常州放心選pH電極如何減少壓力對pH電極測量精度...
pH電極材質選擇的主要原則。1.壓力優先:高壓(>1MPa)場景優先選擇鈦合金 / 哈氏合金外殼 + 金屬密封;低壓(<0.3MPa)可選用 PTFE 或 316L 不銹鋼。2.介質適配:強腐蝕介質中,需在耐壓基礎上兼顧耐腐蝕性(如氫氟酸用 PTFE 外殼,濃鹽酸用哈氏合金)。3.成本平衡:中低壓非腐蝕場景(如純水系統),316L 不銹鋼性價比比較好;極端環境(超高壓 + 強腐蝕)則需接受鈦合金 / 哈氏合金的高成本。pH 電極的耐壓性能主要由外殼材質、玻璃膜材質、密封材料及內部結構設計共同決定,不同材質組合在耐壓極限、適用場景及穩定性上存在明顯差異。pH 電極食品級硅膠密封圈,無析出物污染風...
液接界的離子傳導受阻對 pH 電極測量精度的影響。液接界是電極電解液與被測介質的 “橋梁”,其主要作用是通過離子遷移形成穩定液接電位。壓力升高會壓縮液接界的孔隙(如陶瓷液接界的孔徑從 2μm 壓縮至 1.5μm),導致離子遷移速率下降 —— 壓力每升高 1MPa,液接界電阻可能增加 5-10kΩ。電阻升高會放大測量電路的噪聲,使 pH 讀數波動增大(如在 5MPa 下,讀數標準差從 ±0.01pH 增至 ±0.05pH);若壓力超過液接界耐壓極限(如 PTFE 材質液接界在 0.3MPa 以上),可能因孔隙堵塞導致液接電位漂移(誤差可達 ±0.1-0.2pH)。pH 電極土壤墑情監測需埋深 1...