隨著工業制造升級,石墨與金屬復合工件(如石墨 - 銅復合電極、石墨 - 鋼復合模具)需求增多,但兩種材質導電性、熔點差異大,傳統設備難以實現一體化加工,需分設備加工后拼接,效率低且易出現拼接誤差。石墨火花機通過 “智能材質識別 + 動態參數調整” 技術,實現多材質兼容加工。設備搭載材質傳感器,可自動識別工件上的石墨與金屬區域,針對石墨區域采用低能量高頻放電,針對金屬區域切換為高能量低頻放電,無需人工更換參數;同時,加工路徑自動優化,確保兩種材質過渡區域平滑銜接,避免臺階誤差。某汽車模具企業使用該設備加工石墨 - 銅復合電極,原本分兩臺設備加工需 6 小時,現在一體化加工需 2.5 小時,效率提升 140%,且過渡區域粗糙度達 Ra0.3μm,無需后續打磨,拼接誤差從傳統的 0.01mm 降至 0.002mm,電極加工精度明顯提升,助力模具成型質量升級。火花機的電氣系統防護等級高,適應車間粉塵環境。東莞鏡面火花機
傳統火花機編程復雜,需要技術人員手動編寫 G 代碼,不耗時,還易出現編程錯誤,尤其對于復雜形狀的石墨工件,編程難度更大。石墨火花機簡化了編程流程,支持 CAD 模型直接導入加工,操作人員無需手動編寫代碼,大幅提高編程效率。設備的編程系統兼容 AutoCAD、SolidWorks 等主流 CAD 軟件格式,導入 3D 模型后,系統會自動生成加工路徑,并根據工件材質、尺寸自動推薦放電參數,操作人員只需確認參數即可啟動加工。某設計公司承接的石墨異形件加工訂單,傳統編程需要 2 小時 / 件,現在導入 CAD 模型后,編程時間縮短至 15 分鐘 / 件,編程效率提升 75%;同時,因避免了手動編程錯誤,編程失誤導致的工件報廢率從 8% 降至 1%,加工成本降低 12%。此外,系統還支持加工路徑模擬與干涉檢查,可提前發現加工過程中的潛在問題,確保加工安全。江門火花機加工火花機加工參數可存儲調用,同一零件加工質量穩定。
電極損耗是放電加工中不可避免的問題,若不進行補償,會導致工件尺寸偏差,尤其在精密加工中影響 。電極損耗補償技術主要分為 “在線補償” 與 “離線補償” 兩類:在線補償通過實時監測電極損耗量實現,其 是在加工過程中,數控系統通過分析放電電流波形特征,計算電極損耗速率(通常 0.001-0.01mm/min),并自動調整電極進給量,實現損耗實時補償;離線補償則在加工前通過 “試切法” 獲取電極損耗數據,例如在試切件上加工標準型腔,測量實際尺寸與理論尺寸的偏差,建立損耗補償模型,加工時根據該模型預設電極補償量。對于高精度模具加工(如手機外殼模具),通常采用 “在線 + 離線” 雙重補償方式,使工件尺寸誤差控制在 ±0.002mm 以內,滿足批量生產的精度要求。
深孔石墨加工(孔深>10mm)時,加工屑易在孔內堆積,傳統設備排屑不及時會導致放電不穩定,出現孔壁劃傷、尺寸超差,甚至電極折斷,加工合格率不足 80%。石墨火花機創新研發 “高壓螺旋排屑” 系統,徹底解決積屑難題。設備在主軸內設置高壓冷卻液通道,通過 0.6MPa 高壓冷卻液形成螺旋流,將孔內加工屑強制排出;同時,系統實時監測排屑狀態,當檢測到積屑時,自動調整冷卻液壓力與放電間隙,確保排屑順暢。某模具企業使用該設備加工 15mm 深的石墨定位孔,孔壁劃傷率從傳統的 25% 降至 2%,孔徑尺寸誤差控制在 ±0.003mm 內,加工合格率提升至 98%,且電極折斷率從 8% 降至 0.5%,每月減少電極更換成本近 3 萬元,深孔加工效率提升 40%。火花機的電極夾持裝置牢固,防止加工中電極偏移。
部分石墨加工車間因生產工藝需求(如伴隨熱處理工序),車間溫度可達 35-40℃,傳統火花機在高溫環境下,電氣元件易老化,溫控精度下降,加工誤差增大。石墨火花機針對高溫環境,采用耐高溫設計,確保穩定運行。設備的電氣柜配備恒溫散熱系統,通過工業空調將柜內溫度控制在 25±2℃,避免元件老化;主軸與導軌采用耐高溫潤滑脂,在 40℃環境下仍保持良好潤滑性能;溫控系統自動補償環境溫度對加工精度的影響,修正放電參數。某熱處理配套石墨加工車間使用該設備,在 38℃的車間環境下,設備連續運行 8 小時,加工誤差仍控制在 ±0.003mm 內,與常溫環境加工精度一致;電氣元件使用壽命延長至 5 年以上,較傳統設備(3 年壽命)減少更換成本,滿足高溫車間的特殊加工需求。火花機加工無切削力,避免零件變形,保障加工質量。電火花機供應商
耐腐蝕火花機機身采用特殊涂層,適應潮濕加工環境。東莞鏡面火花機
航空航天領域對零部件的精度與材料性能要求極高,數控火花機憑借非接觸加工優勢,成為鈦合金、高溫合金等難加工材料零部件的關鍵加工設備。在發動機零部件加工中,針對渦輪葉片的冷卻孔(孔徑 0.5-2mm,深度 10-20mm),數控火花機采用管電極放電技術,可實現孔壁垂直度誤差<0.01mm/m,且無切削應力,避免葉片在高溫工作環境中開裂;在航天器結構件加工中,對于鈦合金異形腔體(如衛星燃料艙),通過 5 軸數控火花機加工,可實現腔體表面粗糙度 Ra 0.8μm,尺寸公差 ±0.005mm,滿足航天器輕量化與高精度要求;此外,在航空發動機燃燒室加工中,數控火花機可通過 “多電極分步加工” 技術,實現復雜冷卻通道的成型,通道表面粗糙度 Ra 可達 0.2μm,提高燃燒室的散熱效率與使用壽命。東莞鏡面火花機