在應用中有時雖然保證了柵極驅動電壓沒有超過柵極比較大額定電壓,但柵極連線的寄生電感和柵極與集電極間的電容耦合,也會產生使氧化層損壞的振蕩電壓。為此,通常采用雙絞線來傳送驅動信號,以減少寄生電感。在柵極連線中串聯小電阻也可以抑制振蕩電壓。此外,在柵極—發射極間開路時,若在集電極與發射極間加上電壓,則隨著集電極電位的變化,由于集電極有漏電流流過,柵極電位升高,集電極則有電流流過。這時,如果集電極與發射極間存在高電壓,則有可能使IGBT發熱及至損壞。在冬天特別干燥的地區,需用加濕機加濕;閔行區進口IGBT模塊聯系人

對于大功率IGBT,選擇驅動電路基于以下的參數要求:器件關斷偏置、門極電荷、耐固性和電源情況等。門極電路的正偏壓VGE負偏壓-VGE和門極電阻RG的大小,對IGBT的通態壓降、開關時間、開關損耗、承受短路能力以及dv/dt電流等參數有不同程度的影響。門極驅動條件與器件特性的關系見表1。柵極正電壓 的變化對IGBT的開通特性、負載短路能力和dVcE/dt電流有較大影響,而門極負偏壓則對關斷特性的影響比較大。在門極電路的設計中,還要注意開通特性、負載短路能力和由dVcE/dt 電流引起的誤觸發等問題(見表1)。閔行區進口IGBT模塊聯系人MOSFET驅動功率很小,開關速度快,但導通壓降大,載流密度小。

3、調節功率開關器件的通斷速度柵極電阻小,開關器件通斷快,開關損耗小;反之則慢,同時開關損耗大。但驅動速度過快將使開關器件的電壓和電流變化率**提高,從而產生較大的干擾,嚴重的將使整個裝置無法工作,因此必須統籌兼顧。二、柵極電阻的選取1、柵極電阻阻值的確定各種不同的考慮下,柵極電阻的選取會有很大的差異。初試可如下選取:不同品牌的IGBT模塊可能有各自的特定要求,可在其參數手冊的推薦值附近調試。2、柵極電阻功率的確定柵極電阻的功率由IGBT柵極驅動的功率決定,一般來說柵極電阻的總功率應至少是柵極驅動功率的2倍。IGBT柵極驅動功率 P=FUQ,其中:F 為工作頻率;U 為驅動輸出電壓的峰峰值;
絕緣柵雙極型晶體管(IGBT)在***的電力電子領域中已經得到廣泛的應用,在實際使用中除IGBT自身外,IGBT 驅動器的作用對整個換流系統來說同樣至關重要。驅動器的選擇及輸出功率的計算決定了換流系統的可靠性。驅動器功率不足或選擇錯誤可能會直接導致 IGBT 和驅動器損壞。以下總結了一些關于IGBT驅動器輸出性能的計算方法以供選型時參考。圖2IGBT 的開關特性主要取決于IGBT的門極電荷及內部和外部的電阻。圖1是IGBT 門極電容分布示意圖,其中CGE 是柵極-發射極電容、CCE 是集電極-發射極電容、CGC 是柵極-集電極電容或稱米勒電容(Miller Capacitor)。當集電極被施加一個反向電壓時,J1 就會受到反向偏壓控制,耗盡層則會向N-區擴展。

Rlimit =10~100Ω,C=10~470μF,Creset=10nF.一、柵極電阻Rg的作用1、消除柵極振蕩絕緣柵器件(IGBT、MOSFET)的柵射(或柵源)極之間是容性結構,柵極回路的寄生電感又是不可避免的,如果沒有柵極電阻,那柵極回路在驅動器驅動脈沖的激勵下要產生很強的振蕩,因此必須串聯一個電阻加以迅速衰減。2、轉移驅動器的功率損耗電容電感都是無功元件,如果沒有柵極電阻,驅動功率就將絕大部分消耗在驅動器內部的輸出管上,使其溫度上升很多。盡量遠離有腐蝕性氣體或灰塵較多的場合;楊浦區銷售IGBT模塊設計
幾年當中,這種在采用PT設計的外延片上制備的DMOS平面柵結構,其設計規則從5微米先進到3微米。閔行區進口IGBT模塊聯系人
IGBT是強電流、高壓應用和快速終端設備用垂直功率MOSFET的自然進化。MOSFET由于實現一個較高的擊穿電壓BVDSS需要一個源漏通道,而這個通道卻具有很高的電阻率,因而造成功率MOSFET具有RDS(on)數值高的特征,IGBT消除了現有功率MOSFET的這些主要缺點。雖然***一代功率MOSFET器件大幅度改進了RDS(on)特性,但是在高電平時,功率導通損耗仍然要比IGBT 高出很多。IGBT較低的壓降,轉換成一個低VCE(sat)的能力,以及IGBT的結構,與同一個標準雙極器件相比,可支持更高電流密度,并簡化 IGBT驅動器的原理圖。 [1]閔行區進口IGBT模塊聯系人
茵菲菱新能源(上海)有限公司匯集了大量的優秀人才,集企業奇思,創經濟奇跡,一群有夢想有朝氣的團隊不斷在前進的道路上開創新天地,繪畫新藍圖,在上海市等地區的電工電氣中始終保持良好的信譽,信奉著“爭取每一個客戶不容易,失去每一個用戶很簡單”的理念,市場是企業的方向,質量是企業的生命,在公司有效方針的領導下,全體上下,團結一致,共同進退,**協力把各方面工作做得更好,努力開創工作的新局面,公司的新高度,未來茵菲菱供應和您一起奔向更美好的未來,即使現在有一點小小的成績,也不足以驕傲,過去的種種都已成為昨日我們只有總結經驗,才能繼續上路,讓我們一起點燃新的希望,放飛新的夢想!