光學式在線分析儀的工作原理建立在分子光譜學基礎之上,即不同物質的分子因其結構差異,對特定波長的光會產生選擇性吸收、散射或發射現象。這種選擇性與分子內部的能級結構直接相關,構成了光學分析的根本依據。分子由原子通過化學鍵連接而成,其內部存在三種運動形式:電子繞核運動、原子間的振動運動以及分子整體的轉動運動。每種運動形式對應特定的能級,且能級間的能量差是量子化的。當外界光源發出的光子能量恰好等于兩個能級之間的能量差時,分子會吸收該光子并從低能級躍遷到高能級,形成特征吸收光譜。馳光機電科技不斷從事技術革新,改進生產工藝,提高技術水平。浙江在線雙氧水濁度監測

電極系統與反應原理,溶解氧分析儀采用電化學傳感器,常見類型有極譜型(Clark電極)和原電池型,兩者均基于氧氣在陰極的還原反應產生電流。極譜型傳感器由金或鉑陰極、銀陽極和電解液(如KCl溶液)組成,電極表面覆蓋透氣膜(聚四氟乙烯或聚乙烯,只允許氧氣透過)。測量時,向陰極施加0.6-0.8V的極化電壓,水中的氧氣透過透氣膜擴散至陰極表面,發生還原反應:陰極(還原):O?+2H?O+4e?→4OH?陽極(氧化):4Ag+4Cl?→4AgCl+4e?反應產生的電流與氧氣的擴散速率成正比,而擴散速率又與水中溶解氧濃度相關,因此電流大小可反映DO濃度。浙江在線換熱器泄漏分析儀表廠家馳光具備雄厚的實力和豐富的實踐經驗。

對于均相體系(如純凈氣體、溶液),需避免采樣過程中的組分分離;對于非均相體系(如含懸浮顆粒的液體、氣固混合物),則需確保樣品中各相比例與母體一致。在煙氣分析中,若采樣點選擇在管道拐角處,可能導致粉塵顆粒分布不均,采集的樣品無法反映整體煙氣狀態,因此需選擇在直管段(流速穩定區域)設置采樣點,且采樣探頭應正對氣流方向。穩定性要求強調采樣過程的可重復性和持續一致性。系統需能在長期運行中保持穩定的采樣流量、壓力和溫度,避免因外界條件波動導致采樣狀態變化。
熱導式氣體分析器的測量依據源于氣體的熱傳導現象——熱量通過氣體分子的碰撞和運動從高溫區域向低溫區域傳遞的過程。這種傳遞能力的強弱用導熱系數(又稱熱導率,λ)表示,單位為W/(m?K)。導熱系數是氣體的固有物理屬性,其大小取決于氣體分子的質量、直徑、運動速度及分子間作用力等因素,不同氣體的導熱系數存在差異。單一氣體的導熱系數特性呈現出以下規律:分子量越小的氣體,導熱系數通常越大。例如,氫氣(H?)的分子量只為2,其導熱系數在0℃時約為0.174W/(m?K),是空氣導熱系數(0.024W/(m?K))的7倍多;氦氣(He)的分子量為4,導熱系數為0.142W/(m?K),同樣遠高于大多數氣體。地理位置優越,交通十分便利。

氣相色譜法利用不同物質在固定相和流動相(載氣,通常為氮氣、氦氣等惰性氣體)之間具有不同的分配系數的特性。當樣品被氣化后,由載氣帶入裝有固定相(如填充柱或毛細管柱)的色譜柱中。在色譜柱里,樣品中的各組分在固定相和流動相之間反復進行分配,由于不同組分的分配系數不同,它們在色譜柱中的遷移速度也不同,從而實現分離。分離后的各組分依次進入檢測器,如氫火焰離子化檢測器(FID)、熱導檢測器(TCD)等。FID 通過檢測有機物在氫火焰中燃燒產生的離子流來進行定量分析,對大多數有機化合物具有很高的靈敏度;TCD 則是基于不同氣體具有不同的熱導率,通過檢測熱導池熱絲電阻的變化來測定氣體濃度。馳光機電科技愿與各界朋友攜手共進,共創未來!甘肅色度監測
馳光機電科技嚴格控制原材料的選取與生產工藝的每個環節,保證產品質量不出問題。浙江在線雙氧水濁度監測
電解質溶液的導電性是電導儀的重點原理。電解質溶液之所以能導電,是因為其中存在可自由移動的離子,離子濃度越高、遷移速率越快,溶液的導電能力越強。溶液的電導率(κ)與電阻(R)成反比(κ=1/R),其大小取決于離子濃度、離子電荷數、離子遷移率及溫度等因素。在一定條件下,電導率與電解質濃度呈近似線性關系,這為電導儀的定量分析提供了依據。電極反應的電流響應是安培型分析儀(如溶解氧分析儀)的基礎。當電極間施加一定電壓時,溶液中的特定物質會在電極表面發生氧化或還原反應,產生與物質濃度相關的電流。根據法拉第電解定律,電流大小與反應物質的量成正比,即:I=nFv。浙江在線雙氧水濁度監測