金屬流道PDMS芯片與PET基板的鍵合工藝:金屬流道PDMS芯片通過與帶有金屬結構的PET基板鍵合,實現柔性微流控芯片與剛性電路的集成,兼具流體處理與電信號控制功能。鍵合前,PDMS流道采用氧等離子體活化處理(功率100W,時間30秒),使表面羥基化;PET基板通過電暈處理提升表面能,濺射1μm厚度的銅層并蝕刻形成電極圖案。鍵合過程在真空環境下進行,施加0.5MPa壓力并保持30分鐘,形成化學共價鍵,剝離強度>5N/cm。金屬流道內的電解液與外部電路通過鍵合區的Pad連接,接觸電阻<100mΩ,確保信號穩定傳輸。該技術應用于微流控電化學檢測芯片時,可在10μL的反應體系內實現多參數同步檢測,如pH、離子濃度與氧化還原電位,檢測精度均優于±1%。公司優化了鍵合設備的溫度與壓力控制算法,將鍵合缺陷率(如氣泡、邊緣溢膠)降至0.5%以下,支持大規模量產。此外,PET基板的可裁剪性與低成本特性,使得該芯片適用于一次性檢測試劑盒,單芯片成本較玻璃/硅基方案降低60%,為POCT設備廠商提供了高性價比的集成方案。PVD磁控濺射、PECVD氣相沉積、IBE刻蝕、ICP-RIE深刻蝕是構成MEMS技術的必備工藝。MEMS微納米加工的傳感器

主要由傳感器、作動器(執行器)和微能源三大部分組成,但現在其主要都是傳感器比較多。
特點:
1.和半導體電路相同,使用刻蝕,光刻等微納米MEMS制造工藝,不需要組裝,調整;
2.進一步的將機械可動部,電子線路,傳感器等集成到一片硅板上;
3.它很少占用地方,可以在一般的機器人到不了的狹窄場所或條件惡劣的地方使用4.由于工作部件的質量小,高速動作可能;
5.由于它的尺寸很小,熱膨脹等的影響??;
6.它產生的力和積蓄的能量很小,本質上比較安全。 云南MEMS微納米加工銷售電話熱壓印技術支持 PMMA/COC 等材料微結構快速成型,較注塑工藝縮短工期并降低成本。

MEMS全稱MicroElectromechanicalSystem,微機電系統。是指尺寸在幾毫米乃至更小的高科技裝置,其內部結構一般在微米甚至納米量級,是一個單獨的智能系統。主要由傳感器、作動器(執行器)和微能源三大部分組成。微機電系統涉及物理學、半導體、光學、電子工程、化學、材料工程、機械工程、生物醫學、信息工程及生物工程等多種學科和工程技術,為智能系統、消費電子、可穿戴設備、智能家居、系統生物技術的合成生物學與微流控技術等領域開拓了廣闊的用途。常見的產品包括MEMS生物微流控芯片、MEMS壓電換能器、PMUT、CMUT、MEMS加速度計、MEMS麥克風、微馬達、微泵、微振子、MEMS壓力傳感器、MEMS陀螺儀、MEMS濕度傳感器等以及它們的集成產品。
MEMS技術的主要分類:生物MEMS技術是用MEMS技術制造的化學/生物微型分析和檢測芯片或儀器,統稱為Bio-sensor技術,是一類在襯底上制造出的微型驅動泵、微控制閥、通道網絡、樣品處理器、混合池、計量、增擴器、反應器、分離器以及檢測器等元器件并集成為多功能芯片??梢詫崿F樣品的進樣、稀釋、加試劑、混合、增擴、反應、分離、檢測和后處理等分析全過程。它把傳統的分析實驗室功能微縮在一個芯片上。生物MEMS系統具有微型化、集成化、智能化、成本低的特點。功能上有獲取信息量大、分析效率高、系統與外部連接少、實時通信、連續檢測的特點。國際上生物MEMS的研究已成為熱點,不久將為生物、化學分析系統帶來一場重大的革新。MEMS是一種現代化的制造技術。

MEMS制作工藝深硅刻蝕即ICP刻蝕工藝:硅等離子體刻蝕工藝的基本原理干法刻蝕是利用射頻電源使反應氣體生成反應活性高的離子和電子,對硅片進行物理轟擊及化學反應,以選擇性的去除我們需要去除的區域。被刻蝕的物質變成揮發性的氣體,經抽氣系統抽離,然后按照設計圖形要求刻蝕出我們需要實現的深度。干法刻蝕可以實現各向異性,垂直方向的刻蝕速率遠大于側向的。其原理如圖所示,生成CF基的聚合物以進行側壁掩護,以實現各向異性刻蝕刻蝕過程一般來說包含物理濺射性刻蝕和化學反應性刻蝕。對于物理濺射性刻蝕就是利用輝光放電,將氣體解離成帶正電的離子,再利用偏壓將離子加速,濺擊在被蝕刻物的表面,而將被蝕刻物質原子擊出(各向異性)。對于化學反應性刻蝕則是產生化學活性極強的原(分)子團,此原(分)子團擴散至待刻蝕物質的表面,并與待刻蝕物質反應產生揮發性的反應生成物(各向同性),并被真空設備抽離反應腔太赫茲柔性電極以 PI 為基底構建雙面結構,適用于非侵入式生物檢測與材料無損探測。湖南采用MEMS加工的MEMS微納米加工
MEMS被認為是21世紀很有前途的技術之一。MEMS微納米加工的傳感器
柔性 MEMS 器件因可彎曲、生物兼容的特性,在植入式醫療、可穿戴設備中極具潛力,深圳市勃望初芯半導體科技有限公司通過定制化 MEMS 微納米加工工藝,攻克柔性材料加工難題。公司以 PI 為柔性基底,開發 “光刻 - 干法刻蝕 - 金屬化 - 封裝” 的全流程加工方案:首先通過光刻定義電極與結構圖案,采用氧等離子體干法刻蝕實現 PI 薄膜的高精度圖形化(線寬誤差 ±2μm);然后通過磁控濺射沉積金或鉑金屬層(厚度 50-100nm),制作柔性電極,確保電極在彎曲時的導電性穩定;采用生物兼容封裝材料(如 PDMS)保護結構,避免體液腐蝕。這種工藝制作的柔性 MEMS 電極,可用于植入式生物電刺激 —— 在動物實驗中,將電極植入大鼠腦內,可連續 14 天穩定記錄腦電信號,且對腦組織的損傷率低于 5%;同時,依托 PI 材料的太赫茲波透過性,加工的柔性太赫茲調制器,可貼合皮膚表面,用于皮膚的太赫茲成像檢測,通過微納米結構調控太赫茲波相位,提升成像對比度。某可穿戴設備公司借助該工藝,開發出柔性心率監測貼片,電極通過 MEMS 加工實現微型化(面積 2mm×2mm),佩戴舒適度大幅提升,體現了柔性 MEMS 加工的創新價值。MEMS微納米加工的傳感器