激光雷達使用InGaAs 雪崩二極管探測器, 噪聲等效功率NEP =0 .8 ×10-8W , **小可探測信號功率MDP =1 .5 ×10-7W , 完成了距離成像的實驗, 距離分辨率為0 .25m , 最大距離為2km 。與此同時, 美國Fibertek...
定向性強:毫米波信號的傳播特性使其具有較強的定向性,適合用于點對點的通信。應用領域:5G通信:毫米波是5G網絡的重要組成部分,能夠提供更高的速率和更低的延遲。衛星通信:毫米波被廣泛應用于衛星通信中,以實現高帶寬的數據傳輸。雷達系統:毫米波雷達在汽車、航空等領域...
為了測定目標的距離,雷達準確測量從電磁波發射時刻到接收到回波時刻的延遲時間,這個延遲時間是電磁波從發射機到目標,再由目標返回雷達接收機的傳播時間。根據電磁波的傳播速度,可以確定目標的距離公式為:S=CT/2....其中S為目標距離,T為電磁波從雷達發射出去到接...
新體制雷達包括相控陣雷達(通過陣列天線實現電掃描)、雙/多基**達(發射與接收分置)及超寬帶雷達(寬頻探測提升抗隱身能力),其中相控陣雷達兼具多功能、高目標容量及強抗干擾特性。主要應用于預警、氣象監測、航空管制、導航及***領域(如防空系統、戰場監視),通過不...
毫米波測距測速雷達是一種利用毫米波(通常指頻率在30 GHz到300 GHz之間的電磁波)進行目標測距和測速的雷達系統。這種雷達技術具有高精度、高分辨率和抗干擾能力強等優點,廣泛應用于交通監控、無人駕駛、工業自動化、安防監控等領域。主要特點:高精度:毫米波雷達...
工作原理:測距:雷達發射器發出一束電磁波,波遇到目標后反射回來,接收器接收到反射波。通過計算發射波和接收波之間的時間差,可以確定目標的距離。測速:通過多普勒效應,雷達可以測量目標物體相對于雷達的速度。當目標物體移動時,反射波的頻率會發生變化,雷達可以通過分析頻...
汽車防碰撞技術首先需要解決的問題是汽車之間的安全距離。汽車與汽車之間的距離小于安全距離,就應該能夠自動報警,并采取制動措施。目前,測定汽車之間安全距離的方法有三種:超聲波測距、毫米波雷達測距和激光測距,防撞雷達系統裝配在車輛的前方、側方或者后方,完成前視防撞(...
60GHz毫米波通信是以60GHz頻段為**載波的短距離無線通信技術,主要應用于數字家電、智能交通、工業自動化等領域,實現設備間數Gbps級的超高速數據傳輸。其采用免許可連續頻譜(57-64GHz),具備7-9GHz超大帶寬資源,理論傳輸速率可達25Gbps以...
毫米波波束很窄,天線的旁瓣可以做得很低,使偵察和有源干擾都比較困難,因此,無源干擾在毫米波段有較大的發展。對35GHz以下的毫米波,**常用的干擾手段就是投放非諧振的毫米波箔條和氣溶膠,對敵方毫米波雷達波束進行散射,它可以干擾較寬的頻段而不必事先精確測定敵方雷...
天線:發射/接收電磁波饋線:傳導電磁波伺服:天線等的運轉發射機:產生電磁波接收機:接收處理電磁波信號處理:處理回波信息產品生成:根據算法,生成應用產品/控制雷達顯示終端:顯示產品、控制雷達測云雷達回波不僅可以確定探測目標的空間位置、形狀、尺度、移動和發展變化等...
毫米波 (millimeter wave ):波長為1~10毫米的電磁波稱毫米波,它位于微波與遠紅外波相交疊的波長范圍,因而兼有兩種波譜的特點。毫米波的理論和技術分別是微波向高頻的延伸和光波向低頻的發展。 [1]毫米波頻段沒有太過精確的定義,通常將30~300...
毫米波通信的這個優點來自兩個方面:a)由于毫米波在大氣中傳播受氧、水氣和降雨的吸收衰減很大,點對點的直通距離很短,超過這個距離信號就會變得十分微弱,這就增加了敵方進行**和干擾的難度。b)毫米波的波束很窄,且副瓣低,這又進一步降低了其被截獲的概率。 [4]5)...
雷達告警設備頻率已擴展到40GHz~60GHz,北約正研制一種車載毫米波告警設備,頻段為40GHz~140GHz。此外,通信偵察頻段覆蓋10GHz毫米波段,通信干擾部分40GHz以下已實用化,正在向110GHz發展。在毫米波段還可以利用隱身技術。在對付有源毫米...
而60GHz毫米波無線通信技術因為有足夠的帶寬資源,無需使用復雜技術就可以在較低的信噪比條件下達到吉比特的傳輸速率,性能是其他無線傳輸技術的數十倍。抗干擾性強60GHz無線信號的方向性很強,使得幾個不同方向的60GHz通信信號之間的互干擾非常小,幾乎可以忽略不...
其次,由于通用采集設備或儀器并非專門為激光雷達的需求開發,所以諸多通用功能中只有部分能發揮作用,操作相'對比較復雜。***,由于此類設備均為廠商的產品,其軟件和硬件均不開放,很難通過二次開發將這些設備完全整合進入激光雷達系統。 [1]二極管泵浦固體激光雷達是*...
主要用來探測云頂、云底的高度。如空中出現多層云時,還能測出各層的高度。由于云粒子比降水粒子小,測云雷達的工作波長較短。測云雷達只能探測云比較少的高層云和中層云。對于含水量較大的低層云,如積雨云、冰雹等,測云雷達的波束難以穿透,只能用測雨雷達探測。計算公式目標距...
俄羅斯研制成功的KDKhr-1N遠距離地面激光毒氣報警系統,可以實時地遠距離探測化學毒劑攻擊,確定毒劑氣溶膠云的斜距、中心厚度、離地高度、中心角坐標以及毒劑相關參數,并可通過無線電通道或有線線路向**自動控制系統發出報警信號,比傳統探測前進了一大步。德國研制成...
雷達的出現,是由于一戰期間當時英國和德國交戰時,英國急需一種能探測空中金屬物體的雷達(技術)能在反空襲戰中幫助搜尋德國飛機。二戰期間,雷達就已經出現了地對空、空對地(搜索)轟炸、空對空(截擊)火控、敵我識別功能的雷達技術。二戰以后,雷達發展了單脈沖角度跟蹤、脈...
美國卡曼航天公司研制成功的機載水下成像激光雷達,比較大特點是可對水下目標成像。由于成像激光雷達的每個激光脈沖覆蓋面積大,因此其搜索效率遠遠高于非成像激光雷達。另外,成像激光雷達可以顯示水下目標的形狀等特征,更加便于識別目標,這已是成像激光雷達的一大優勢。激光雷...
雷達差別在于它們各自占據的頻率和波長不同。其原理是雷達設備的發射機通過天線把電磁波能量射向空間某一方向,處在此方向上的物體反射碰到的電磁波;雷達天線接收此反射波,送至接收設備進行處理,提取有關該物體的某些信息(目標物體至雷達的距離,距離變化率或徑向速度、方位、...
云雷達通過發射35GHz(毫米波)或激光頻段電磁波,接收云粒子反射信號獲取物理參數 [1] [8]。典型設備如西安華騰毫米波測云儀可探測15km內云結構,具備垂直速度檢測能力 [1] [3]。雙波段云雷達(WR-KuKa型)則能獲取100km高度內的回波強度與...
除了體積和價格因素外, 研究LADAR 自動尋的彈頭的另外原因是其可以獲得高精度、高分辨率的目標和背景的三維距離和反射率圖像。這些信息是先進高效的ATA 算法所需要的, 在某些條件下, 可以直接提供目標識別和特征點信息。能夠正確地從背景中(如其它建筑物中)識別...
云雷達是一種通過發射電磁波探測云參數的大氣探測儀器,采用微波或激光等技術手段 [2-3] [5] [7]。其**功能包括獲取云頂高、云底高、云量等垂直廓線數據,并具備高時空同步探測能力 [3] [6]。2024年南通建成的微波激光復合雷達實現了云、雨、氣溶膠一...
2000年以來,歐、美、日等眾多國家相繼在60GHz附近劃分出5G~7GHz的免許可連續頻譜,豐富的帶寬資源奠定了實現2Gbps超高速無線傳輸的基礎,而且60GHz頻段無需許可即可使用,這使得用戶無需負擔昂貴的頻譜資源允許費用,因此60GHz無線通信炙手可熱,...
速騰聚創推32線激光雷達,用于無人駕駛車,RL32垂直角分辨率達到0.33度,探測距離達到200米,搭載該產品、時速高達100千米/小時的自動駕駛汽車有7秒的時間對環境作出反應,能夠提升自動駕駛的安全性。 [6]激光雷達優點與普通微波雷達相比,激光雷達由于使用...
抗干擾性:電磁場完全限制在波導管內,受外部電磁環境影響小于自由空間傳播系統 [2]安全性:輻射泄漏量較無線電通信降低60dB,適用于***保密通信場景衛星通信系統波導傳輸鏈路可替代傳統射頻電纜,解決星載設備間高頻信號傳輸損耗問題 [2]日本ETS-VIII衛星...
歷史背景自從1839年由Daguerre和Niepce拍攝第一張像片以來,利用像片制作像片平面圖(X、Y)技術一直沿用。到了1901年荷蘭人Fourcade發明了攝影測量的立體觀測技術,使得從二維像片可以獲取地面三維數據(X、Y、Z)成為可能。一百年以來,立體...
5G毫米波是第五代移動通信技術的重要組成部分,指頻率范圍為30GHz-300GHz、波長為1-10毫米的電磁波,可實現4-5Gbps傳輸速率,有效解決Sub-6GHz頻段頻譜資源緊張問題 [1] [3] [6]。作為5G標準定義的兩大頻段之一,該技術通過靈活彈...
小型靈巧**(SSB)、巡航導彈(CM)、反導彈武器、空對地遠程導彈、直接打擊武器、AGM-130 和其它遠程武器等都與精確打擊和大范圍搜索有一定共性。基于這些共性, 可研究系列LADAR 自動尋的彈頭, 以滿足不同的應用需求。主要技術創新應該包括:可變的脈沖...
60GHz 原始數據的最高速度達到25000Mbps,而802.11n標準和UWB只能分別實現600Mbps和480Mbps的傳輸速度。例如:用802.11n需要近一個小時才能傳完的DVD,用60GHz則只需要15秒和當前眾多的無線通信技術相比,60GHz之所...