生物發光共振能量轉移(BRET)是一種天然的或工程化的均相檢測技術。它利用生物發光蛋白(如海腎熒光素酶Rluc)作為供體,催化底物(如腔腸素)產生化學發光,該能量直接轉移給鄰近的熒光蛋白(如GFP、YFP)受體,使其發出熒光。BRET無需外部光源激發,完全消除了光散射和自發熒光的背景,信噪比極高。在活細胞研究中,可將Rluc和熒光蛋白分別與兩個可能相互作用的靶蛋白融合,通過監測BRET信號來實時、動態地研究蛋白互作的空間接近性和動力學,是研究GPCR二聚化、信號轉導復合物組裝的強大工具。均相化學發光與電化學發光相比,有什么不同?均相化學發光均相發光優點

li'ru進行均相發光檢測需要專門應用的多功能微孔板檢測儀。這類儀器通常集成了多種功能,例如:能夠提供特定波長的光激發(用于熒光、TR-FRET),或具備注射器以添加化學發光/電化學發光觸發試劑;比較關鍵的是,擁有高靈敏度的光電倍增管(PMT)或CCD檢測器來捕獲微弱的光信號。先進的儀器還具備溫控功能,并能同時或依次進行不同模式的檢測(如熒光強度、時間分辨熒光、化學發光)。儀器的性能直接決定了檢測的靈敏度、動態范圍和通量。均相化學發光均相發光優點均相發光技術研究進展,浦光生物為您提供前沿資訊!

化學發光共振能量轉移(CRET)是另一種重要的均相信號產生機制。它本質上是一種無需外部光激發的內源性FRET。在CRET中,供體是化學發光反應產生的激發態分子(如氧化的魯米諾或吖啶酯),其發射的光子能量直接傳遞給鄰近的熒光受體(如熒光染料、量子點或納米材料),促使受體發射出波長紅移的熒光。在均相檢測設計中,可將化學發光分子與受體分別標記在相互作用的生物分子對上。只有當目標分子存在并促使兩者結合時,供體與受體才能充分靠近,發生有效的CRET,產生特征性的受體熒光信號。通過檢測受體熒光,可以避免直接化學發光可能存在的背景干擾,并獲得更佳的光譜分辨能力,利于多重檢測。
在分子診斷領域,均相發光技術的應用遠不止于基礎的實時熒光定量PCR(qPCR)。它正推動該領域向著更高靈敏度、更強特異性和更便捷的操作模式演進。例如,在數字PCR(dPCR)這一定量技術中,雖然目前主流依賴熒光檢測,但基于化學發光的均相檢測方案正在探索中。其設想是將PCR反應體系分割成數萬個微滴后,利用化學發光探針(如基于魯米諾或吖啶酯的體系)進行檢測:在擴增陽性微滴中,探針被切割或構象改變觸發化學發光反應,通過計數發光的微滴數目即可實現核酸分子的定量。這種方法可能免除對復雜激發光學系統的依賴,并有望利用某些化學發光體系更高的信噪比特性,進一步提升對極低豐度靶標的檢出能力。均相化學發光在心血管疾病診斷中的應用價值是什么?

在重癥炎癥(如膿毒癥)、CAR-T診療或某些自身免疫病中,細胞因子風暴是危及生命的狀態,需要快速監測多種炎癥因子。基于微球陣列的均相化學發光多重檢測技術,能夠從單份微量血清或血漿樣本中,同時定量檢測IL-6、IL-1β、TNF-α、IFN-γ等十幾種關鍵細胞因子的濃度。這種高通量、多參數的分析能力,使得臨床醫生或研究人員能夠多方面、快速地掌握患者的炎癥風暴譜系,評估嚴重程度,并監測診療干預(如抗細胞因子抗體)的效果,為精細免疫調控提供依據。均相化學發光對檢測環境有什么特殊要求?湖南干式化學發光均相發光應用領域
創新驅動未來!均相化學發光創新產品引導體外診斷新潮流!均相化學發光均相發光優點
從原理上深度對比均相與異相免疫分析,能清晰揭示均相技術的革新之處。異相分析法,以經典的酶聯免疫吸附試驗(ELISA)為表示,其檢測依賴于將捕獲抗體固定在固相載體(如微孔板)上,通過反復洗滌來分離“特異性結合”與“游離”的標記物,比較終通過底物顯色或發光來定量。這個過程繁瑣、耗時,且洗滌步驟容易導致結合物損失。而均相免疫分析則讓所有反應組分在溶液存。通過物理化學手段,使得只有當目標分子正確結合,形成特定復合物時,才能產生或改變發光信號。例如,在臨近誘導技術中,只有兩個標記有供體和受體的抗體同時結合一個抗原分子并彼此靠近時,能量轉移才能發生,從而報告陽性信號。所有未結合的標記物因其距離遠,不產生有效信號,故無需分離。
均相化學發光均相發光優點