激酶是重要的藥物靶點,其活性檢測是藥物篩選的關鍵。均相發光技術,尤其是TR-FRET和Alpha技術,為此提供了理想平臺。以TR-FRET為例:將待測激酶、底物肽、ATP與待篩選化合物共同孵育。體系中包含兩種抗體,一種針對磷酸化底物(帶供體標記),另一種針對底物肽的標簽(帶受體標記)。只有當激酶活性正常,底物被磷酸化后,兩個抗體才能同時結合到底物肽上,使供受體靠近產生FRET信號。若化合物能抑制激酶,則磷酸化水平下降,FRET信號減弱。這種方法無需分離,可直接在含有ATP、激酶和化合物的混合液中實時或終點法檢測,通量極高,是發現激酶抑制劑的主流手段。32.無需冷鏈運輸!浦光生物均相發光凍干試劑可常溫運輸,降低運輸成本,輕松觸達偏遠地區!廣西診斷試劑均相發光的原理

組蛋白修飾酶(如甲基轉移酶、去甲基酶、乙酰轉移酶、去乙酰化酶)是**、神經疾病等領域的熱門靶點。均相化學發光技術為這些酶活性的檢測和抑制劑篩選建立了成熟平臺。以組蛋白甲基轉移酶為例,通常使用生物素標記的S-腺苷甲硫氨酸(SAM)類似物作為甲基供體。酶反應后,生物素標記的甲基被轉移到組蛋白底物上。然后,使用針對甲基化位點的抗體(偶聯供體珠)和鏈霉親和素(偶聯受體珠)通過Alpha技術檢測,信號強度與酶活性成正比。這種方法靈敏度高,抗干擾能力強,可直接在含有化合物和輔因子的混合體系中進行篩選。化學發光均相發光臨床檢驗醫學中的應用研究均相化學發光,國家重點實驗室檢測平臺,領航醫療新時代!

Alpha(Amplified Luminescent Proximity Homogeneous Assay)技術是均相化學發光的典范。其供體珠中裝載光敏劑,在680nm激光激發下,將周圍環境中的氧分子轉化為高能量、短壽命(約4微秒)的單線態氧。單線態氧在溶液中的擴散半徑只約200納米。受體珠中則裝載了化學發光劑(通常是噻吩衍生物)和熒光接收體。當單線態氧擴散進入鄰近的受體珠,會觸發一系列級聯反應:化學發光劑被氧化并發光,該能量隨即傳遞給熒光接收體,比較終發射出波長更長(520-620nm)、特征更明顯的熒光。這個能量轉移和放大的過程,使得一個單線態氧分子能引發大量發光分子的發射,實現了信號的有效放大,因此靈敏度極高。
均相發光技術正逐步應用于食品安全和環境監測等多應用領域。例如,檢測食品中的毒(如黃曲霉素)、抵抗細菌藥物殘留或病原菌等。通過設計針對這些污染物的抗體或適配體,并將其與均相化學發光信號系統偶聯,就可以開發出快速、高通量的篩查方法。相較于傳統的色譜或微生物學方法,均相化學發光技術具有檢測更快捷,適合大批量樣本的初篩的特點。在環境監測中,常常可用于檢測水中的重金屬離子、有機污染物等,具有現場快速分析的潛力。均相化學發光技術的原理是什么,如何實現檢測?

在藥物安全性評價早期,評估化合物的遺傳毒性至關重要。傳統的細菌回復突變試驗(Ames試驗)周期較長。一些基于哺乳動物細胞的均相化學發光遺傳毒性篩選方法被開發出來。例如,使用工程細胞系,其中DNA損傷響應元件(如p53響應元件)調控著熒光素酶報告基因的表達。當化合物引起DNA損傷時,會活化報告基因,產生化學發光信號。這類方法能在幾天內完成對大量化合物的初步遺傳毒性風險評估,作為Ames試驗的高通量預篩選工具,有助于早期淘汰有風險的候選分子,節約研發成本。創新驅動未來!均相化學發光創新產品引導體外診斷新潮流!江西第五代化學發光均相發光臨床檢驗醫學中的應用研究
均相化學發光技術在臨床檢驗中的普及程度。廣西診斷試劑均相發光的原理
自身免疫病的診斷常依賴于檢測患者血清中的特異性自身抗體。均相化學發光技術為此提供了高通量、自動化的解決方案。例如,可以將已知的自身抗原(如dsDNA、ENA蛋白)包被在供體微珠上,患者血清中的自身抗體如果存在,則會與抗原結合。然后加入標記有受體(如熒光標記的抗人IgG抗體)的受體微珠或試劑,形成“抗原-自身抗體-抗人IgG”復合物,從而拉近供受體產生信號。這種方法可以實現多種自身抗體的同步檢測,快速輔助臨床診斷。廣西診斷試劑均相發光的原理